

SCOPE OF ACCREDITATION TO ISO/IEC 17025:1999

GE Infrastructure Sensing

10311 Westpark Drive Houston, TX 77042-5312 Mr. Kenneth A. Kolb

Phone: 713-975-0547 Fax: 713-975-6338

E-mail: kenneth.kolb@ge.com URL: http://www.gesening.com

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

NVLAP Code: 20/A01 ANSI/NCSL Z540-1-1994; Part 1 Compliant

MECHANICAL

NVLAP Code: 20/M08

Mass

Calibration of Primary Piston Gauge Masses

Range	Best Uncertainty (±)	Remarks
	Relative to Indicated Value note 1	
1 mg to 17 kg	5.0×10^{-6} but not less than 0.5 mg	Substitution – Mechanical
1 mg to 1.2 kg	5.0×10^{-6} but not less than 0.5 mg	Substitution – Electronic
Calibration of Secondary	Piston Gauge Masses	
1 mg to 8.0 kg	2.0×10^{-5} but not less than 0.5 mg	Substitution – Electronic
1 mg to 1.2 kg	2.0×10^{-5} but not less than 0.5 mg	Direct Reading - Electronic
1.2 kg to 8 kg	2.0×10^{-5} but not less than 43 mg	Direct Reading – Electronic

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

Page 1 of 4

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

THERMODYNAMICS

NVLAP Code: 20/T05

Pressure

Pneumatic Pressure using Primary Piston Gauge note 2

Range -100 kPa to -1.38 kPa	Best Uncertainty (±) of Reading note 1 1.0 x 10 ⁻⁵ but not less than 0.07 Pa	<i>Remarks</i> Negative Gauge Mode
-16 kPa to 16 kPa	1.1 x 10 ⁻⁵ but not less than 0.034 Pa	Differential Mode
1.38 kPa to 1.4 MPa 1.4 MPa to 7 MPa	1.0 x 10 ⁻⁵ but not less than 0.07 Pa 1.1 x 10 ⁻⁵ but not less than 2.8 Pa	Gauge Mode ^{note 4} Gauge Mode ^{note 4}
7 MPa to 21 MPa 21 MPa to 104 MPa	$1.1 \times 10^{-5} + 1.9 \times 10^{-7} \text{ per MPa}$ 3.5×10^{-5}	Gauge Mode Gauge Mode

Pneumatic Effective Area Determination using Primary Piston Gauge note 2

Range	Best Uncertainty (±) of Reading notes 1, /	Remarks
1.38 kPa to 345 kPa	8.8×10^{-6}	
11.72 kPa to 1.4 MPa	8.3×10^{-6}	
14 kPa to 7 MPa	$1.0 \times 10^{-5} + 2.4 \times 10^{-7} \text{ per MPa}^{note 3}$	
700 kPa to 21 MPa	$1.0 \times 10^{-5} + 4.8 \times 10^{-7} \text{ per MPa}^{note 3}$	
1.17 MPa to 104 MPa	3.37×10^{-5}	

Pneumatic Pressure using Precision Transducer note 2

Range	Best Uncertainty (±) of Reading note 1	Remarks
0 Pa to 133 Pa	0.133 Pa	Absolute Mode
-16 kPa to 16 kPa	5.0×10^{-5} but not less than 0.035 Pa	Differential Mode
-100 kPa to 17 MPa	6.5×10^{-5} but not less than 0.22 Pa	Gauge Mode note 5

Pneumatic Effective Area Determination using Precision Transducer ^{note 2} 20 Pa to 17 MPa 7.2 x 10⁻⁵ but not less than 0.05 Pa

2007-01-01 through 2007-12-31

Effective dates For the National Institute of Standard

Page 2 of 4

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

Pneumatic Deadweight Tester Output Pressure Conformance using Precision Transducer note 2

Range Best Uncertainty (±) of Reading notes 1,8 Remarks

20 Pa to 17 MPa 7.5×10^{-5} but not less than 0.053 Pa

Hydraulic Pressure using Primary Piston Gauge note 2

Range	Best Uncertainty (±) of Reading notes 1, 6	Remarks
50 kPa to 7 MPa	2.5×10^{-5} but not less than 10 Pa	Gauge Mode
7 MPa to 140 MPa	3.5×10^{-5}	Gauge Mode
14 MPa to 280 MPa	7.5×10^{-5}	Gauge Mode
280 MPa to 500 MPa	1.0×10^{-4}	Gauge Mode

Hydraulic Effective Area Determination using Primary Piston Gauge note 2

Range Best Uncertainty (±) of Reading note 1 Remarks

50 kPa to 7 MPa 2.31×10^{-5} 7 MPa to 140 MPa 3.34×10^{-5} 140 MPa to 280 MPa 7.29×10^{-5} 280 MPa to 500 MPa 9.80×10^{-5}

Hydraulic Effective Area Determination using Secondary Piston Gauge note 2

70 kPa to 140 MPa 7.2×10^{-5}

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

Sally S. Bu

Page 3 of 4

CALIBRATION LABORATORIES

NVLAP LAB CODE 200491-0

Hydraulic Deadweight Tester Output Pressure Conformance using Secondary Piston Gauge note 2

70 kPa to 140 MPa

 7.5×10^{-5} but not less than 50 Pa

8. Conformance evaluation of Deadweight Tester output pressure compared to indicated pressure.

2007-01-01 through 2007-12-31

Effective dates

For the National Institute of Standards and Technology

Sally S. Bu

Page 4 of 4

^{1.} Represents an expanded uncertainty using a coverage factor, k = 2, at an approximate level of confidence of 95 %.

^{2.} This capability includes on-site calibration service, as limited by influences of operating environment.

^{3.} Component uncertainties are combined in quadrature.

^{4.} For absolute mode, uncertainties increase by 1.33E + 00 Pa, combined in quadrature with stated level.

^{5.} For absolute mode, uncertainties increase by 1.88E + 00 Pa, combined in quadrature with stated level.

^{6.} For absolute mode, uncertainties increase by 1.31E + 01 Pa, combined in quadrature with stated level.

^{7.} Calibration process may include the use of transducers to measure small differential pressures.